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Exact Solutions for Stimulated Emissions by
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The exact solutions for transition amplitudes are derived for stimulated emissions
by external sources. More precisely, we obtain the exact expressions for transition
amplitudes for the emission of an arbitrary number of particles by the sources
when some particles are already present, in the process, prior to the “switching
on™ of the external sources. The solutions are given for an arbitrary number of
particles with arbitrary configurations (of momenta, spin, etc.) and for particles
of spin-0, spin-1/2, massive and massless (photons}) spin-1 particles, and massless
{gravitons) spin-2 particles. Applications are given as illustrations to the process
¢ — anything, and, in quantum electrodynamics, to the process v-> e*e¢” +any
photons, in the presence of external sources, where a (virtual) photon decays
into the pair e*e™.

1. INTRODUCTION

Almost all the statistical properties of multiparticle emission by external
sources (cf., Manoukian, 1984, for a recent study; see also Paul, 1982) may
be obtained from the known expressiohs (cf., Schwinger, 1970, 1969) of the
transition amplitudes, in the presence of the sources, from the vacuum to
the multiparticle state. The latter expressions may be obtained from the
vacuum-to-vacuum transition amplitude (0.j0_) followed by a systematic
use of unitarity. The treatment of the problem for stimulated particle
emission by the sources is, however, more involved but is in the same spirit
and a systematic study of the problem is certainly lacking in the literature.
By stimulated particle emission one is referring to transition amplitudes for
particle production by the sources when some particles are already present,
in the process, prior to the “switching on” of the external sources.
Expressions are known to exist in the literature (cf., Schwinger, 1970) only
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148 Manoukian

for very special cases, such as for weak sources, but general expressions
which cover all cases, such as for strong sources and with arbitrary number
of particles of different configurations (of momenta, spin, etc.) in the initial
and final states, are, to our knowledge, not available. The purpose of this
paper is to obtain such exact expressions. Our main results are summarized
in equations (16), (26), and (54). The analysis is applied to particles of spin
0, massive and massless (photons) spin-1 particles, massless (gravitons)
spin-2 particles, and for particles of spin 1/2. Applications are carried out
in Section 3 as illustrations to the process ¢ — anything, and, in quantum
electrodynamics, to the process y > e"e” +any photons, where a (virtual)
photon decays into the pair e*e".

2. STIMULATED EMISSION
2.1. Spin-0 Particles

The vacuum-to-vacuum transition amplitude for charge-0, spin-0 parti-
cles interacting with an external source K(x) is given by the well-known
expression

0,]0)% =exp 51 J (dx)(dx)K(x)A (x—x")K(x")=exp EiKA+K (1)

where

(dp) P>
A —x) = +0 2
+(x x) J’ (27T)4 (p2+m2_i8)’ £ ( )
’ . ip(x—x' i ..d3p_ 1
A+(x—x)=t_[da)pe"( ) x> x", dwpz(zﬂ_)i? (3)
p°=+(p*+ m?)"% We also introduce the Fourier transform:
K(P)=J (dx) e "PK(x) (4)

For the subsequent analysis, it is convenient to introduce a discretiz-
ation notation (Schwinger, 1969, 1970; Manoukian, 1984) for the momentum
variable by setting in the process:

K,=(dw,)'*K(p) (5)
The vacuum persistence probability may be then written as

0410 Y*P=exp—3 | K|’ (6)

Let {p:, p2, ...} =S denote the set of all possible momenta in a con-
venient discrete-momentum notation, If n,, n,,, ... denote the number of
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particles with momenta py, p», . .., such that n, +n, +- - - =n denotes the
total number of particles, then (Schwinger, 1970; Manoukian, 1984):

x (iKp)™ (iKp) "™
(np1!)1/2 (nm!)l/z

x (UK ™ (iKg)™
(nm !)132 (nng}ljz

To obtain the transition amplitudes for stimulated emission we proceed
as follows. We write (Schwinger, 1970) K = K, + K, + K;, where the source
K, is switched on after the source K, is switched off, and the source K is
switched on after the source K, is switched off. We may then write

(0.,0_)% = (0,]0_Y%(0,]0_y*(0,]0_)* exp iK¥iK, exp iK¥iK, exp iK¥iK,
9)

<n; npp npzo e IO—'>K = (O+|O*-) (7)

015 Ty, Ry - ) =(010) (8)

where
P

and K, is defined in (5), (4). Upon expanding the last three exponentials
on the right-hand side of (9), we obtain

0oy 3 UKI)™ (KS)  (KE)™ (K5,) ™
T e (DY ()2 (my, )2 (my,H'"?
(iKZZpl)nm (iKsz) "e2 . (IK;.kpl) l‘“
(nlil!)l/2 (nl’z!)l/z (1911)1/2
Kz(iKml)m"‘ (iKlpz)m"
(my, )7 (my,)"*
P P2*

X .<0+,0»>Ka

(iK){pz) lnz
(lp2 !) 1/2
(I.Klpl) 1’1 (iKlpz) lpz
B (0"

“++{04]0.)

{0,000 (an

where Y. stands for a summation over all nonnegative integers n, , n,,
ceey Mg My b k..., such that
ngtng,t-=nmytmy e c=ml, Hl 4 =1 (12)

and overall m, n, 1=0,1,2,....

We may also rewrite (0,]0_)* in terms of a unitarity sum (Schwinger,
1970, Manoukian, 1984) as
<0+IO“>K = Z <0+lN; Npla sza .. ')Ka

ek
X(N; Ny, Ny, M My M, YAM M, M, 005

(13)

12
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where Y, stands for a summation over all nonnegative integers N, ,

Ny,...,M, , M, ...such that
NP1+NP2+..':M MP1+MP2+--.=M (14)

and over all N, M=0,1,2,.... The amplitude (N; N,, N,,,...[M;
M, , M, ... )% represents the transition amplitude for the creation of N
particles, N, of which have momenta p,, N,, of which have momenta
P2, . - -, When there are already M particles, M, of which have momenta
p:1, M, of which have momenta p,, ..., prior to the switching on of the
source K,. This is exactly the object we are seeking and represents the
stimulated emission of particles.

Upon systematic use of the expressions for the amplitudes in equations

(7), (8), setting

nPi + mPi = NPi’

my, + 1, =M, (15)

i

i=1,2,..., and comparing equations (11) and (13) we arrive to the
following expression:

(N; Ny Ny o IM My, M, . 05

(iKp) Mo

(N, —mp)!

y (iKp) ™™ (0,]0)F  (KE)Me ™ (K )M e
(N, —my,)! my tmy - (M, —my)! (M,,—m,)!

=(Np,INy,! ... M, IM, ! .. 2y

¢

e (16)

for a general source K, and where Y * stands for a summation over all
nonnegative integers m,, m,,..., such that 0=m, =min(N,, M, ), i=
1,2,..., and where the equalities in equation (14) should be noted. The
expression in (16) is exact. Applications of this formula will be given in
Section 3.

2.2, Massive Spin-1 Particles

The vacuum-to-vacuum transition amplitude is given by (cf. Schwinger,
1969), in the presence of an external source J*(x):

(0,]0-)" =exp El J (dX)(dX')J"(X)<g,w - 6;2) Av(x=x)J"(x") (17)

2 "
g/uz+ 2 Z e,u(p’)‘)ev(Ps)‘) (18)
m A=1
p“e.(p,A)=0, A=1,2,3 (19)

ey-(pa)‘)*ep.(p,)t’):a/\/\'y AaA,::la 2,3 (20)
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where e*(p, A) is the polarization vector. Upon setting

1/2 * d’p 1
Jp/\:(dwp) ey.(paA) J (p)a dwp:(z*ﬂ)?,.i?,

p0= (p2+ m2)1/2

(21)
J (p)= j (dx) e™PJH(x) (22)

we have in a convenient discrete-momentum notation:
JoyP=exp( -5 147).  a-12.3 23)

]Jpon Setting r=(Pa /\)a re{r1=(P1; 1)’ r2=(P13 2), r3 (pl, 3) L
(p2, 1), . ..} one may also write, for example, directly from (7), (8)

s ()" ()"

(n; nrn nrzﬁ .. '|0—>J = <0+|0 > (n )1/2 (n .)1/2 e (24)
@) ™ (@E)™
<0+|n; LW (R ) _<0+IO >J l!)1/2 (n2!)1/2 st (25)
Finally from (16) we may then infer that
<N e rza . IM Mrp Mrza .- '>
il )N,,‘m,, (i, )Nrfmrz
= IN ... 1 1.. )2 *( n 2

(N, IN,! M, M,! ‘ )y (N —m)! (N, — )1

(010 (IR)Mn " TH)MeT (26)

mrI!mrz! e (Mr1~mr1)! (Mrz—mrz)!

where Y.* stands for a summation over all nonnegative integers m,, i=
1,2,..., such that 0= m, =min(N,, M, ). Also note that N, + N,,+- - - =N,
M, + M, +---=M, and J, = J,2, with J,, defined in (21).

‘2.3. Photons

The vacuum-to-vacuum transition amplitude, in the presence of a
conserved external current J*(x): 4,J*(x) =0, p*J,(p) =0, is given by (cf,
Schwinger, 1970):

(0,]0_)Y =exp -~ J(dx)(dx’)]“(x)DJx x)J,(x") (27)
o [ Adp) P

D,.(x x)—J 2m)* p2—i£ A £->+0 (28)

o PRI 5 n(p, 2)e” (g, AV 29)

(pp) A1
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p*=(p°%p), p*=(p°, —p), where e“(p, A) is the polarization vector, A =
1, 2. Upon setting

= {(dew. )V? % Fu — d3p __1..,.
Jor =(dwy)"" e, (p, A)Y*T*(p), dwp—(zw)3 2ol (30}
We may write
0.0y P = exp( - if,miz), A=1,2 (31)

Equations (24), (25), and (26) also hold true with now A =1,2, m=0.

2.4. Massless Spin-2 Particles: Gravitons

The vacuum-to-vacuum transition amplitude, in the presence of a
symmetric T,,(x)=T,,(x) and conserved 4,T*"(x)=0, p.,T*"(p)=0,
p.T*"{—p) =0, external source T, (x) is given by (cf.,, Schwinger, 1970):

i

(0.]0)" =exp 2 J (dx)(dx") T* (X)[ 8180 ~ 18us8ro 1D+ (x = X") T (x)
(32)
We set
dp 1
*T @n) 20l
where e,,(p, 1), A =1, 2 are (real) polarization tensors. We may effectively
replace [ 2,80 ~38us8r0] 83

Ton =(dw,) % e,.(p, ) T*(p), dw (33)

2
[g;LAgva —%g‘uvg/ur] -> /\’Z—I e;w(P, /\i)e/\a(l’: ’\’)* (34)
One then obtaing
l<0+lo—>‘2= exp( ) ITp.\IZ), A=1,2 (35)
A

and equations (24), (25), and (26) are true with J, formally replaced by T,,
r={p, A), where now A =1,2, m=0.
2.4. Spin-1/2 Particles

The vacuum-to-vacuum transition amplitude, in the presence of
external (anticommuting) sources n{x), #(x), may be written as

(0,10_)" =exp i J (dx)(dx") 7 (x)S+(x—x")n(x") (36)
n_ [ (dp) " (—yp+m)
S+(x~—x)—'( Q) pami-ie e=>+0 (37)
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(¥D)"'=9° (%)= -7 It is readily checked that 7(p)(—yp+m)n(p) is
real. Using the eigenfunction expansion

—yp+m) _

EREM_5 w(p )acp, o) (8)

we may write 7(p)(—yp+m)n(p) =1, 2mq(p)u(p, )u(p, o)n(p), and
the latter is positive. Hence we have

|<0+|0->|2=exp{—22 J‘ dw, 2m[7(p)u(p, o)i(p, U)n(p)]} (39)

We also note in a standard notation:

3. o(p, )3(p, o) = 2 (40)
Y. [u(p, o)i(p, o)—v(p, o)i(p, o)]=1 (41)
a(P, U)“(Pa o-l) = 60’0” (42)
5(1’, O')U(pa OJ) = _80'0" (43)
We set
(2m dw,)*7(p)u(p, o) =n}k,_ (44)
(2m dw,)""*i(p, o)n(P) = Npo- (45)
(2m dw,)"*5(p, o)n(—p) = 1}, (46)
(2m dw,)*7(—p)o(p, 0) = Mo (47)

where the signature — corresponds to a particle, and + to the anti-particle.
We introduce the convenient notation r=(p, 0, ¢), 0 =1,2, ¢ = +.
We then have

(i)™ (in)"
(n, )" (n, )"

(i) (in¥)™

<0+|n; n’l’ n’z’ v _)" = <0+10—>T’ o W (nn!)l/z

where one should note the opposite ordering (Schwinger, 1970) in (48) and

(49), which is a consequence of the anticommuting nature of the external

sources. We note that n,, =0 or 1 because (7,)> =0, and hence n,!=1 always.

From equations (48), (49) one should note that

(i )n—-1;n,,...,n,_,0,n ,...[J0)"
=)™ (g, n, 1m0 [00)T (50)
<O+ln - 1; nrp mees nrj_‘a 0, nrj+la .- >Tl(ln>rlj)

= (—l)n'l+“.+nrj—1<0+1n; nrl, DAY n,.j_l, 1,}_, nrj_H, .. _)"7 (51)

(15 1y My JO) = 0.0y (48)

(49)
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To obtain the transition amplitudes for stimulated emissions we write
7 =17,+ 1.+ 13, where 7, is switched on after 7, is switched off, and #; is
switched on after 7, is switched off. Upon using the expansion property
(n,=0o0r1),

exp X ind,in,,

=X L (inE)"(ind,) 2 - (imay,) (i, )™
=n

n "r1+"rz+"'_

=L X (i) "(iman) ™ (i) (i)™ (52)

n np tn ke

we obtain, as in Eq. (11), the expression
0400)"="% - (in,) =(in%,) "(in2n) "1 (in2y,) ™2 « - - (0,]0_)"™

Ckoek)

X (in%,) ™(in3;,) 2+ - - (in2,) ™2(ing,,) "(0,]0_)™

x < (in3,) 2 (inF,) (ing,) n(iny,) - - (04100 (53)
where one should be careful with the ordering, and (.. stands for a
summation over n,, m,, I, =0, 1; i=1,2,..., such that n, +n,+---=n,
m,+m,+--=m l,+L+---=landn L m=0,1,2,....

By a systematic use of equations (48)-(51), we obtain from (53) by
using a unitarity expansion as in equation (13} the exact expression:

(N; N,y N,y M5 My, M, )
— Z* (_1)mrl(N+M)(_l)er(N+M+er+Mrl)(_1)mrS(N+Mfer+N,2+M,l+Mr2)
Xeoee (’ﬂn) er-—mrl(inrz)NrZ_mr2 e <0+|0_>71
s (i) M (i B M T (54)
2

1

12

where }* stands for a summation over m, =0, 1 such that 0=m, <
min[N,, M, ],i=1,2,....The presence of the phase factors in the summand
in equation (54) should be noted.

3. EXAMPLES

Before considering applications to stimulated emission by the external
sources, we quickly point out some of the details of the very general method
developed earlier (Manoukian, 1984) in determining transition probabilities
for multiparticle production by external sources.

Consider the transition amplitude in (7) in the presence of the real
scalar source K(x). The transition probability is then

2(,Kpllz) "r (,anlz) "2 L.

1
ny ! ny.!

I<n’ np,; npzp e IO—>KI2 = I<O+|O—>K[

(55)
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where [(0,]0)] is given in (6). Let A,={Q1,Quz-..}, .., Ac=
{Qux1, Qiz, - - . } be some given disjoint subsets of the set of all momenta
S={p1, P2, - - .}- Let nq, denote the number of particles with momenta Q.
Let n,, denote the number of particles with momenta in the set A, Then
we may use the following identity:

s UKayren(Ko)re:

1
nQy Pt =ns nq,,: nq,,:

o (Toe 1K F) B
_ UKo [ +lKo '+ 1™ ( e

Na,! na,!

E(L dwg |K(Q)|2) nAl/nAll (56)

Hence from (55), with n=n, +- - - + n,,, the transition probability that the
source K emits n particles, n,, of them having momenta in A,, n,, of them
having momenta in A,,..., is given by

(wiscor)” ([ somar)”

na,! ny, !

exp( - [ dwa k()

(57)

We now consider some stimulated emission processes. We study the

process ¢ —>any ¢, in the presence of the external source K, where ¢

represents a charge-0, spin-0 particle. Suppose the initial momentum of ¢

is py- In equation (16), this corresponds to M =1, M, =1, M, =0,....

Since 0= m,, =min[ N, M, ], this also means that m,, =0, m,,=0, ..., and
0=<m, =min[ N, 1]. That is

_ (KN (iK,) s

(N; N, =
P (sz!)uz (Np3!)1/2

N, - {105

s (0,0YSK Y (58)

It
if N,, =0, and for N, =1,
(N3 Ny, Ny, o 1,05 = (NG IN, 1+ - )2

(iKyp,) ™ (iK,,) N :
S A A
P |2
(lK )NPI'1 (lK 2)sz
ST e LS (59)
.41 * P2°

Clearly, the second term in the curly brackets in equation (59) corresponds
to a disconnected process where the initial particle just passes through the
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process undetected by the source. Hence in all cases, we may write for the
connected process, where the initial particle is detected by the source before
multiparticle production occurs is given by

K (lKPl) 1 (iKy,) "o
Pz" 11P1> ( )1/2(N )1/2

(N; Ny, (0,J0Y (iK})  (60)
As an interesting application suppose that the net energy-momentum release
is Q, then we may write for the transition probability for the process ¢ - any
¢, with masses m =0:

S (| Kp, ) N (K ) N
2 P: P2 0L JOYEIIK. |2
( W) Nz=o Npl+N§+...=N pr! sz! |< +| > || pll
X 8(Np,p1+ Ny, pot+ - =p1 = Q) (61)

where p; = (|p;|, p:). The & function may be more conveniently written as

S(Nyp1+ Ny pote v —py— Q)

= (2;)44[ (dZ) €Xp i[Np1p1+NP2p2+ cer—pi— Q]Z (62)

Hence upon using the identity in (56), we may rewrite (61) as

[1Kyp,* ™+ |Ky " e +-
N1

[ 5 L1, exof - ~31K,f)

x exp[—i(p;+ Q)z] (63)

Therefore, if the tip of the initial particle momentum p, =p lies in the range
d’p, we have from (63)

d’p |K(P)|2J‘ —i(p+Q)z [_J' d’p 201 ipz]
27) 2P0 (dz) e*7 exp (277)32P0[K(P)' (1-e%) (64)

where we have used the fact that
. . . d3p .
(1K, [* €™ +|K, | e+ - ‘]=ZlelzelszJ"—_—3'—o] (p)I’ ™ (65)
' » (2m)2
and the relation in equation (6).
We now consider a more involved application dealing with quantum
electrodynamics in the presence of an external current J*(x). We study the

rocess y- e e +any photons, to lowest order in the charge, where a
p yp g
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(virtual) photon decays into the pair ¢*e”. To this end the vacuum-to-
vacuum transition amplitude may be effectively written as

(0,00 =exp> j (dx)(dx')J* (x) DZrJu(x') (66)
where

(dp) r’ 2 %) e>+0  (67)

D(Z) ) :___J'
+(x=x) @am* ), 7 (p*+o?—ie)

and we retain only the lowest contribution p®(o?), in e, to the spectral
function. Also note that any multicurrent contribution in the exponential
in (0,]0_)"¢ necessarily involve terms of higher orders in e.

Upon setting effectively,

d’p 1

de‘T = (27’_)3 2(P2+ 0_2)1/2

(68)

We may infer from equations (26), (64), and (66), that the transition
probability P for the process is given by

P=qa -a—Pa (69)
da a=0
where a = e*/4m, and effectively,

d’p J' ‘
P =— L O 2 —i(ptQ)z
o (277)32lpl|el»‘-(ps/\) J (p)| (dz) 4

LS T
o] - G oo

&Ep [ dop® @) . .,
xexp['[ Q2m) 4[0 2(p2+a-2)1/2" (p)*J.(p)

x exp{i[p - z— (p*+ %) 2Z"]}] (70)

Using the well-known fact that

1 2m? 4m*\ /?
- + 1-
o)) o
o*=4m* where m is the mass of the electron (positron), and if it has

momentum p, (p,), then ¢®=~(p,+p,)* =2m>—2(p, - p,— pip3) = 4m>. It
is worth noting that (p, +p.)>+ o> = (pd+p3)>

d 2 d (2) 2
3 (e _9
a0{;0( ) Py (%)

a=0
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All told the transition probability P for the process may be written

_(=)_d® NP o
P~(37T)(27T)32]p||e‘”‘(p’/\) JH(pl J(dZ)e ¢ ?’

d3 ' o, o
x exp{ - J G (PPN = e >]}

S oo T ()1 )
27)? Jam2 02 2+ H)V? o’ o’

x[J*(q)*]. ()] exp ilq - z— (¢’ +0%)"/*2"] (72)

where the initial photon has a polarization A, and a momentum p with tip
in the range d°p. The momenta and the polarization of the final products
are not measured. We note that in the last integral ¢°= (¢*>+ %)%

Other applications are similarly carried out.
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